The Rover Pipeline is a 713-mile pipeline designed to transport 3.25 billion cubic feet per day of domestically produced natural gas from the rapidly expanding Marcellus and Utica shale production areas to markets across the U.S. as well as into the Union Gas Dawn Storage Hub in Ontario, Canada, for redistribution back into the U.S. or into the Canadian market.

The approximate $4.2 billion pipeline will transport gas from processing plants in West Virginia, eastern Ohio and western Pennsylvania for delivery to pipeline interconnects in West Virginia and eastern Ohio as well as the Midwest Hub near Defiance, Ohio, where up to 68 percent of the gas will be delivered for distribution to markets across the United States.

The remaining 32 percent of the natural gas will be delivered to markets in Michigan via an interconnect near Livingston County, Michigan, with the existing Vector Pipeline, which has established delivery points to local distribution companies and the vast Michigan storage fields throughout the state. Additionally, Vector will transport natural gas that is not delivered to Michigan markets on to the Dawn Hub in Ontario, Canada.

Economic Benefit

Approximate Projected Ad Valorem Taxes:

- **West Virginia**: $3.9 million
- **Total Project**: $147 million

The tax figures listed above are calculated according to the state tax code based on an estimated capital spend for Rover. The state will allocate Rover’s taxable value based on a distribution of cost per taxing jurisdiction and counties will disperse funds to townships/districts in accordance with local taxing jurisdiction rates. These figures are estimates and should not be used for tax jurisdiction planning purposes since they are subject to change.

The Rover pipeline will be providing a public utility service in West Virginia. Property used directly in the rendition of a public utility service is not subject to sales/use tax in West Virginia.

Miles of Pipeline Per County

<table>
<thead>
<tr>
<th>County</th>
<th>Miles (Per County)</th>
<th>Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doddridge</td>
<td>14.89</td>
<td>Beech</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maple</td>
</tr>
<tr>
<td>Hancock</td>
<td>5.26</td>
<td>Clay</td>
</tr>
<tr>
<td>Marshall</td>
<td>12.04</td>
<td>District 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>District 2</td>
</tr>
<tr>
<td>Tyler</td>
<td>23.60</td>
<td>Central</td>
</tr>
<tr>
<td></td>
<td></td>
<td>North</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South</td>
</tr>
<tr>
<td></td>
<td></td>
<td>West</td>
</tr>
<tr>
<td>Wetzel</td>
<td>1.97</td>
<td></td>
</tr>
</tbody>
</table>

Project Timeline

- **2nd Quarter 2014**: Submitted FERC Pre-Filing Request
- **1st Quarter 2015**: Filed FERC Certificate Application
- **4th Quarter 2016**: FERC Issues Construction Authorization
- **2nd Quarter 2017**: In-service to Defiance, Ohio
- **November 2017**: In-service to Vector/Dawn Hub, Canada

Property taxes are estimated to be approximately **$147 million** during the first year of service.

Rover Pipeline will contribute nearly **$1 billion** in direct spending to the United States economy as 76 percent of the pipe will be manufactured in the United States, along with all compression assembly and packaging. The majority of the remaining major materials will be purchased, manufactured or assembled in the United States.

More than **$124 million** will be paid in direct payments to landowners for easements and approximately **$620 million** will be paid for labor to the various contractors working on the project.
1) Surveying and Staking: Many months ahead of construction, field surveys are conducted along the proposed pipeline route, or right-of-way, to better understand environmental, development and local issues. A final route is then selected. The specific location of the selected route is then marked with stakes.

2) Front-End Clearing: Once weather conditions permit, crews begin to prepare for construction by grading the right-of-way and temporary work space to remove trees and prepare the working space.

3) Right-of-Way Grading: In cultivated areas, the topsoil along the right-of-way is stripped by bulldozer and stored in piles for careful replacement later.

4) Stringing Pipe: Crews then re-stake the center of the trench, lay out or “string” sections of the pipe along the right-of-way.

5) Bending Pipe: Crews bend and weld the pipe into one long piece.

6) Lineup, Initial Weld: The pipeline will follow the contours of the land.

7a) Trenching: These pipes are already coated to prevent corrosion. The integrity of the weld is inspected, and the weld joint is coated.

7b) Trenching: Once this process is complete, backhoes or wheel excavators are used to dig a trench.

8) Final Coating and Inspection: In agricultural areas, careful attention is paid to properly separating and storing the topsoil and subsoil so they do not mix. The pipe coating is inspected one more time.

9) Lowering Pipe Into Trench: The pipe is lowered into the trench where it is surveyed and laid within prepared trench bottom.

10) Pad Backfill, Rough Grade: The trench is then backfilled with subsoil and separated topsoil set aside in many areas.

11) Testing Final Tie-In: Before operation, water is used to test the pressure of the line and ensure the structural integrity of the pipe and welds.

12) Final Clean-Up, Full Restoration: Final grading is performed and topsoil spread over work area using a bulldozer.

Note: These illustrations are conceptual and general in nature; specific construction and restoration techniques could vary depending on circumstances.